Nanos3 Gene Targeting in Medaka ES Cells

نویسندگان

  • Guijun Guan
  • Yan Yan
  • Tiansheng Chen
  • Meisheng Yi
  • Hong Ni
  • Kiyoshi Naruse
  • Yoshitaka Nagahama
  • Yunhan Hong
چکیده

Gene targeting (GT) by homologous recombination offers the best precision for genome editing in mice. nanos3 is a highly conserved gene and encodes a zinc-finger RNA binding protein essential for germ stem cell maintenance in Drosophila, zebrafish and mouse. Here we report nanos3 GT in embryonic stem (ES) cells of the fish medaka as a lower vertebrate model organism. A vector was designed for GT via homologous recombination on the basis of positive-negative selection (PNS). The ES cell line MES1 after gene transfer and PNS produced 56 colonies that were expanded into ES cell sublines. Nine sublines were GT-positive by PCR genotyping, 4 of which were homologous recombinants as revealed by Southern blot. We show that one of the 4, A15, contains a precisely targeted nanos3 allele without any random events, demonstrating the GT feasibility in medaka ES cells. Importantly, A15 retained all features of undifferentiated ES cells, including stable self-renewal, an undifferentiated phenotype, pluripotency gene expression and differentiation during chimeric embryogenesis. These results provide first evidence that the GT procedure and genuine GT on a chromosomal locus such as nanos3 do not compromise pluripotency in ES cells of a lower vertebrate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fish Stem Cell Cultures

Stem cells have the potential for self-renewal and differentiation. First stem cell cultures were derived 30 years ago from early developing mouse embryos. These are pluripotent embryonic stem (ES) cells. Efforts towards ES cell derivation have been attempted in other mammalian and non-mammalian species. Work with stem cell culture in fish started 20 years ago. Laboratory fish species, in parti...

متن کامل

p53 Gene Targeting by Homologous Recombination in Fish ES Cells

BACKGROUND Gene targeting (GT) provides a powerful tool for the generation of precise genetic alterations in embryonic stem (ES) cells to elucidate gene function and create animal models for human diseases. This technology has, however, been limited to mouse and rat. We have previously established ES cell lines and procedures for gene transfer and selection for homologous recombination (HR) eve...

متن کامل

Mitf expression is sufficient to direct differentiation of medaka blastula derived stem cells to melanocytes.

Embryonic stem (ES) cell lines have provided very useful models to analyse differentiation processes. We present here the development of a differentiation system using ES-like cell lines from medaka. These cells were transfected with the melanocyte specific isoform of the microphtalmia-related transcription factor (Mitf). Mitf is a basic helix-loop-helix-leucine zipper transcription factor whos...

متن کامل

Efficient and heritable gene targeting in tilapia by CRISPR/Cas9.

Studies of gene function in non-model animals have been limited by the approaches available for eliminating gene function. The CRISPR/Cas9 ( C: lustered R: egularly I: nterspaced S: hort P: alindromic R: epeats/ C: RISPR AS: sociated) system has recently become a powerful tool for targeted genome editing. Here, we report the use of the CRISPR/Cas9 system to disrupt selected genes, including nan...

متن کامل

Medaka Cleavage Embryos Are Capable of Generating ES-Like Cell Cultures

Mammalian embryos at the blastocyst stage have three major lineages, which in culture can give rise to embryonic stem (ES) cells from the inner cell mass or epiblast, trophoblast stem cells from the trophectoderm, and primitive endoderm stem cells. None of these stem cells is totipotent, because they show gene expression profiles characteristic of their sources and usually contribute only to th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2013